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A system of postulates of non-local macroscopic phenomological hydrodynamics is proposed based on the results of the microscopic 
theory previously obtained. Space time non.locality holds in the material relations of the theory. The implementation of an 
axiomatic scheme is presented for the case ofa multicomponent mixture with viscosity and thermal conduction. In this case, the 
classical transport laws are obtained in the limit of long waves and slow processes. It is proved that, within the framework of 
non-local hydrodynamics, it is possible to combine the dissipation and the finite velocity of propagation of a signal in a consistent 
manner. A model functional form of the kernels is proposed which satisfies all the requirements of the theory. © 1999 Elsevier 
Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

The Chapman-Enskog method [1-3] enables one, when there is a certain small parameter in the kinetic 
equation (that is, in the equation for the one particle distribution function of the molecules of the 
medium), to obtain a system of hydrodynamic equations and to derive, jn the second order of 
perturbation theory, the classical transport laws of Newton, Fourier and Fick. The equations of an ideal 
medium are obtained in the first order of perturbation theory. Generalizations and modifications of 
the Chapman-Enskog theory have been developed which are based on various assumptions regarding 
the occurrence of small and large parameters in the kinetic equation as well as on various asymptotic 
expansion schemes [4-6]. However, these methods do not work if there is no corresponding small or 
large parameter. Furthermore, the question remains open as to whether a particular solution of the 
kinetic problem corresponds to an arbitrary solution of the hydrodynamic problem. 

It has recently been shown that, for a specified form of the sources or external forces, not only kinetic 
theory [7-10] but also quantum and classical statistical mechanics are exactly equivalent to non-local 
hydrodynamics [11-17]. A space-time non-locality arises in the material relations, that is, in the 
expressions for the flows of the hydrodynamic quantities. This equivalence means that, in the case of 
an arbitrary solution of the hydrodynamic problem, it is possible to reconstruct the corresponding process 
in kinetics and in quantum and classical statistics. The relation of these last results to the Chapman-  
Enskog results is the same as that between any exact theory and an asymptotic method: it is possible 
to use the Chapman-Enskog asymptotic forms in non-local hydrodynamics and to obtain the classical 
local transport laws. 

Other approaches to the derivation of the equations of non-local hydrodynamics from the kinetic 
equation or from the classical or quantum Liouville equation have been implemented [18-20]. In this 
case, the initial dynamical equations are taken in a form without external forces or sources. As was 
shown in [17], this fact does not enable one to calculate the non-local material relations in a unique 
manner. The authors were therefore forced to eliminate possible arbitrariness implicitly in a "by hands" 
manner. The issue of the realizability of the inverse transition from, a hydrodynamic description to a 
kinetic or statistical description was also not touched upon. 

In this paper, the fundamental statements of non-local hydrodynamics, which are required to construct 
models of continua and to solve actual problems in mechanics are systematized without recourse to 
microscopic dynamical theories. 

Since the non-locality which is being considered covers the case of temporal non-locality, that is, 
heredity, the proposed theory has certain common features with rational mechanics [21-23], which 
describes materials with complex rheology and heat conduction which are determined by the past history 
of the deformations of a particle of the medium. Rational mechanics has the structure of an axiomatic 
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theory without a connection with the laws of physics; the correctness of the theory must therefore be 
verified experimentally for each actual material. In this respect, the following fundamental differences 
exist between the theory proposed and the approach in [21-23]: (a) a spatial non-locality is included 
in the treatment, (b) the theory encompasses all phenomena and processes in continua and not only 
rheology and heat conduction, (c) the fundamental statements of non-local hydrodynamics are rigorously 
proved in fundamental physics, that is, beyond the limits of what is properly classical mechanics. 

Apart from rationalmeehanics, another phenomenological theory, which enables on to take account 
of relaxation processes in a particle of a medium, known as extended thermodynamics [24], is being 
developed. The fundamental idea behind this theory lies in the extension of the set of characteristics 
of a particle of a medium for which a hierarchy of relaxation differential equations is written out. 
Extended thermodynamics is formally and mathematically embedded in non-local hydrodynamics: it 
corresponds to the special case when the Fourier images of the relaxation kernels in the material relations 
have a discrete set of poles in the complex frequency plane. The opposite is not true, and non-local 
hydrodynamic models with a continuous spectrum of relaxation times cannot be described within the 
framework of extended thermodynamics. 

Note that, in principle, non-local hydrodynamics can be constructed solely on the basis of the internal 
laws of mechanics [25-27], as is the case for extended thermodynamics. However, significantly weaker 
results are obtained when this is done. 

A non-relativistic approximation is used below and, for simplicity, we do not touch upon questions 
associated with boundary conditions: it is assumed that the medium occupies the whole space and that 
a state of rest or equilibrium translational motion is realized at infinity. The Greek superscripts take 
the values 0, 1, 2, 3, corresponding to a certain inertial measurement system x a, where x ° is the time. 
The Latin superscripts a, b, c, d take the values 1, 2, 3, corresponding to the spatial Cartesian coordinates. 
Summation is carried out over repeated indices. 

2. FUNDAMENTAL PROPOSITIONS 

In hydrodynamic models, the complete system of governing equations has the form of local 
conservation laws for certain mechanical quantities: energy, momentum and so on. Suppose that QO is 
a complete set of densities of such quantities, which are assumed to be functionally independent. 
Henceforth, the Latin subseriptsA, B and C take the values 0 , . . . ,  (N - 1), where N is the number of 
independent conservation laws. At a fixed instant of time, there is a set of distributions QO = QO(xa ) 
which, at infinity, tend to the constant values Q~0, which correspond to the equilibrium state of the 
medium. We shall assume that deviations from equilibrium AQ ° = QO _ QO are Lebesgue summable. 

Defmition 1. We shall call the set of distributions Q~ = Q_~(x a) the instantaneous state of the medium. 
The norm in the space L 1 of the Lebesgue integrable functions AQ ° enables one to interpret the space 
of instantaneous states as an affme normed space. 

Theaxioms of non-local hydrodynamics are then numbered asA0, A1, A2 . . . . .  
A0. A smooth closed form 

o 
fl  = 1FASQA (2.1) 

is defined in the space of the instantaneous states of the medium. 
Generally speaking, the distributions/# = Fa(x a) which occur in formula (2.1) are functionals which 

depend on the instantaneous state of the medium. It is assumed that, at spatial infinity, the quantities 
/~  reduce to certain equilibrium values ~0. 

Lemma 1. A smooth functional H, the differential of which is identical to Q, is defined in the space 
of the instantaneous states of the medium. 

Proof. For a given instantaneous state Q~l(Xa), we choose a smooth process P: Q~ = Q_~(t, xa), 0 <~ t <~ 1 such that 

& s  0 0 

and we put 

P 
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The fact that H is independent of the choice the process follows from the fact that the form is closed. 

Remark 1. The quantityHwith the opposite sign is interpreted as the entropy of the system apart from a constant 
term. 

Definition 2. The second order form ~"~1 = DEH is the second differential of the functional H [28]. 
A1. In the case of an equilibrium instantaneous state, f~l is a positive definite form. 
The following lemma arises from A 1 and the implicit function theorem. 

L e m m a  2. In a certain neighbourhood of the equilibrium state, the distributions Q°(xa) can be 
expressed as functionals of the distributions FA(~). 

Using the notation gO = QO _ QO0, f4 = F.4 _ jTOA ' we write out the corresponding dependence in the 
form of a Taylor series 

+ 

+ ~ Za c(Xb b b b a b C b b b (2,2) - x I ,x  - x 2 ) f  ( x ! ) f  (x 2 )dx 1 dr 2 +... 

We now define the matrix 

A,,~(ka) =,f exp(- ikaxa)g,~(xa)dx a 

According to A 1, this matrix is Hermitian and positive definite 

A = A + > 0 (2.3) 

A2. The dynamics of the medium is determined by the system of equations 

~aQ~ = sa(aa = BIBxa) (2.4) 

where the hydrodynamic flows Q~ = Q~(x a) depend on the past history of the medium 

~(-~) = Qba[xa, Q~ ( °  ~ ~ ,  xa.)] (2.5) 

and the sources sA -- SA(X '~) describe the action of external systems on the medium. 
It is assumed that, at spatial infinity, the flows tend to the equilibrium values Q~0. Since, in the case 

of ,~uilibrium states, the set of equilibrium densities ~ 0  is decisive, the quantities ~A0 are functions 
of szA0. 

Suppose a certain smooth process P: Qo = QO (xa), _ o0 ~ x ° ~ +oo, which starts and terminates with 
an equilibrium state, is obtained as a result of the action of sources (2.4). Then, by (2.4), the following 
equality holds 

0 = ~  ~ = A ~ + A  2 
P 

A 1 = ~ FasAdx a, A 2 = ~ ~aFA~AA dJfa 

The following a priori constraint is imposed on the form of functional (2.4). 
A3. The inequality A2 ~< 0 holds. 
~-aditionally, functional (2.5) is subdivided into an equilibrium component ZaA and a non-equilibrium 

DaA component 

~ ( x  a) = Z~a(a ~ ) + Da(x a) (2.6) 

LPa(x*) = ffa[x*, Q~(x°, x~] (2.7) 

/2PA(xa) = O~[x *, Q~x ° "  an, xa*)] (2.8) 

although, of course, the introduction of these components in the case of the given functional (2.5) does 
not change the dynamical equations. 

By definition, representation (2.6) must satisfy three conditions: 
(a) for a process which starts out from and terminates at the same equilibrium state, the following 
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relation holds 

(b) if the equality 

j 3oFXZ~dx a = 0 (2.9) 

A 
cAQ ] + caQ~a = 0 (2.10) 

A is satisfied in the case of certain constants c a, c~, then the following equality holds 

caffa --" 0 (2.11) 

(c) the component (2.8) identically vanishes for spatially constant QO. 
Nevertheless, the assumptions concerning the representation (2.6) which have been listed does not 

enable one, in the case of a given functional (2.5), to determine the equilibrium flows ~ uniquely without 
recourse to microscopic theory. It is simple to determine the flows ~ in the special case when an 
additional condition is satisfied. 

B. The quantities F A, ~ are determined by the values of the quantities QO at the same point. 
In the latter case, the dependence of the quantities F A, ~ on the values of QO is the same as the 

dependence in the class of equilibrium states (that is, it is determined by ordinary equilibrium 
thermodynamics). 

Remark 2. Condition B is not an axiom. It can be violated in quantum and classical statistical mechanics. It is 
always satisfied in kinetic theory. 

Using Lemma 2, we express the flows (2.7) and (2.8) in the form of functional series in powers o f f  A 

a + 

eB'x°  xb~¢a'xO xb~dxbdxb + (2.12) X j ~ , I l J  I, ' 2 )  I 2 " '" 

= I ° - + 

c B t x e L ~ ¢ B t x a ~ . I - a c L ~  a x ~s ~ I Js ~ z~'~! 2+.-- (2.13) 

and define the matrices 

Z~n(kb) = J exp(-ikbxb)z~B(xb)dx b 

I 

c ~ 0 Note that the kernels ~.~(x~), ~ c ( x ] ,  x~) . . . .  vanish when Xn < 0 (causality) and hence, by 
the Paley-Wiener theorem [29], the functions/~AbB(k~), BaB(k~) are holomorphic in the half plane 
Im k0 ~< 0. 

Lemma 2. The following matrix relations hold 

Z ° =Z o÷ (2.14) 

B + + B >-- 0 (2 .15)  

Proof. Substituting expressions (2.12) into (2.9), changing to the Fourier images, discarding terms of the second a) order with respect to the functions f~(x and using the arbitrariness in the choice of these functions, we obtain 
equality (2.14). Then, using A3 (2.6), (2.9)and (2.13) and the arbitrariness in the choice of the functions fA(xa), 
we derive inequality (2.15). 

The matrix inequality (2.15) is the usual dissipation condition which arises in models with heredity 
[25]. However, microscopic theories give a stronger condition. 
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A4. The inequality 

Cff*Cff(D~ + / ~ * ) ~ O  (2.16) 

is satisfied in the case of the arbitrary complex quantities C~a. 
Additional constraints on the kernels (an analogue of the Onsager conditions) follow from micro- 

reversibility. We shall assume that the equilibrium state at infinity is a state of rest. Suppose 
that, accompanying time reversal, the quantities QO are multiplied by the numbers cA, eA = +- 1. 

A5. The following equalities hold 

Aaa(kc) = eagaAaa(---kc) 

zaaB(kc) = --~aenZ~a(--kc) (2.17) 

Remark 3. The axiomA5 imposes constraints on the kernels in linear perturbation theory. It follows from general 
considerations [30] that mieroreversibility implies constraints at all orders of perturbation theory. However, since 
the non-linear part of functionals (2.2), (2.12) and (2.13) have not been sufficiently well studied in microscopic 
theory at the present time, we shall confine ourselves here to a linear formulation. 

3. H Y D R O D Y N A M I C S  OF A M U L T I C O M P O N E N T  M I X T U R E  

We shall now apply the mathematical scheme of Section 2 to the case of a multicomponent mixture 
without chemical reactions. Suppose M is the number of components. We shall assume that i andj take 
the values 1 , . . . ,  M, corresponding to the number of components, and that I and J take the values 4, 
5 . . . . .  (M + 3). If i and j and I and J are used in the same formula, their values are related by the 
equalities I = i + 3, J = j + 3. A, B and C take the values 0, 1 . . . .  , (M + 3), corresponding to the laws 
of conservation of energy, of the components of the momentum and the numbers of molecules of the 
components in the mixture. We shall assume that a state of rest is realized at spatial infinity and that, 
together with axioms A O - A 4 ,  condition B is satisfied. 

Hence, Q0 is the energy density, Q0 is the density of the ath component of the momentum and 
ni = QO is the molar density of the component of the mixture with number I. 

The parameters F A in formula (2.1) allow of the following physical interpretation 

F ° = .-~, F* = ~lu a, F t = ~l.ti (3.1) 

where fl is the inverse temperature, u a are the components of the velocity of the medium, ~t; = (lai0 - 
1/2miuaua), I.tio is the chemical potential of the ith component of the stationary medium and mi is the 
molar mass of the ith component. 

Now, in order to give a more traditional form to the hydrodynamic equations (2.6), it is necessary 
to express the hydrodynamic 4-flows Q~ in terms of other quantities. We now introduce into consideration 
the mass density 9 = Y.i mini, the mean mass velocity with components u a = p- laO,  the diffusion fluxes 
with the components P/= (Q~ - nfl.ta), the kinetic energy density of the medium K = 1/2puau a, the internal 
energy density of the medium U = Q°o - 1/2pUaU a, the stress tensor with the componentsp ab = (puau b 

ab a b - Q~) (which is assumed to be symmetric) and the thermal flux vector with the componentsp = (pu u 
- Qab - ( U  + K ) u  a. We emphasize that the new definition of the velocity of the medium with components 
u a matches the old definition (3.1) in the case of equilibrium states. 

System (2.4) can now be rewritten as 

a 0 (U .4- K)  .4- a a (qa _ pabub + (U + K)u a) = s o 

~o(PU a) + ~b( -p  ab + puau b) = S a 

aon i + a a( l a + niua) = s t 

We will now discuss the definition of the viscous stress tensor. In the case of equilibrium states, the 
stress tensor reduces to the spherical tensorp ab = - p 8  ab. Hence, in the class of equilibrium states, the 
pressure p can be expressed as a function of the internal energy U and the densities ni. Using this 
functional relation, we extend the definition of pressure to non-equilibrium states. The components of 
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the viscous stress tensor are then calculated using the formula 

,gab = gab + p~ab 

After the above transformations, in order to specify the material relations, it is sufficient to give 
expressions for the dissipative flows qa, xab, Pi. The remaining terms in the expressions for the 
hydrodynamic flows Q~ are the redesignated equilibrium states ~ and are calculated in the class of 
equilibrium distributions. From the results in Section 2, we obtain 

q" = / ~ ,  ~ '  = -D~, I~' = D~l (3.2) 

Note the identity of the form (2.10) 

from which the equality 

of the form (2.11) follows. 

M 
y ,,,,ff-(g =0 
i=l 

M 
]~ m,D~! =0 (3.3) 
i=l 

We will now study in greater detail the algebraic structure of relations (3.2) in f ie  linear approximation. 
For an arbitrary function g = g(x~), we shall denote its Fourier image by the symbol gr(k~,) 

s ~  = &p(~) = J exrg-i~x~)s(x~)ax ~ 

Retaining the principal terms in relations (3.2) and changing to Fourier images, we obtain, taking 
(2.13) into account 

q ~  • ab s =tkb l~$ f~  (3.4) 

~ f  • = • (3 .5)  

The equality 

I~ - ikbD~ts f ~ (3.6) 

M 
Y. mid ~ =0  (3.7) 
t-I 

is obtained from (3.3) in the linear approximation. 
We now assume the invariance of the theory with respect to the group of rotation 0(3) which means 

that the medium is isotropic. We then have 

(,~)o)~(~. st.)=o~(~, k.) (3.8) 

for any g e O(3). Here r are 0(3) groups which have been introduced in the linear space • of 
quantities of the form Da~. In O, we now pick out the maximum setof  linearly independent invariants 
with respect to a subgroup which preserves the 3-vector kb: P = I ~  ° (kc). These invariants are chosen 
such that 

(,,g(kc))" = 1~(-ko) 
The most general representation, which is compatible with (3.8), then has the form 

(3.9) 

(3.10) 

HereXn = Xn(ka) are scalar functions. In accordance with (3.9) and the reality of the Fourier prototypes 
dAB, these functions satisfy the condition 

(X,,(~))" = X,,(-ka) (3.11) 
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and they are therefore the Fourier images of certain real kernels Yn = Yn(x~): YnF = Xn. Since the 
functions X n are holomorphic with respect to the variable k0 in the lower complex half-plane, then, by 
the Paley-Wiener theorem [29], it follows that the functions Y,,(x '~) vanish when x ° < 0 (causality). 

The algebraic structure the coefficients/~a~ enables us to write out an expansion of the form (3.10) 
which is invariant under the group of rotations. Here, the symmetry conditions Da~ = DC~, D~ac ~ = D~, 
(consequences of the symmetry of the stress tensor) and the reciprocity conditions (2.17) should be 
kept in mind. It is therefore sufficient to write out representation (3.10) for the following components 

ogg = a . ,x ,  + kok, X, 

= a,,Xst + ~okbX,~ 

D~ = a..a,~x~ + (a.,a,~ + a,6a,~)Xs + a,,,.t,,t,,x7 + 
-l.(kakbacd "4" tckbaad "4" ~akd~cb "4" kckdaab)X $ "4" kakbkc~dX 9 

O~ = ~.bX,,u + ~otbX.u 

We now consider material relations (3.4)-(3.6) in the limit of small gradients, that is, in the linear 
approximation with respect to the wave number ka 

(3.12) 

(3.13) 

(3.14) 

3 ;1,,=0 

By considering relation (3.12) w h e n f  t -- 0, we pick out a component which is proportional to the 
temperature gradient and the thermal conductivity x 

'~ = -P2 x°l,,,--o 

Finally, from (3.14), it is possible to separate out the matrix of the coefficients which relates the 
diffusion fluxes and the gradients of the chemical potentials 

D# - -.-pXz3u[~ = ° 

The fact that the transport coefficients are real follows from condition (3.11). Inequality (2.15) ensures 
the non-negativeness of the coefficients ~v, rls, × and of the matrix/)#. The symmetry of the matrix D# 
follows from reciprocity conditions (2.16). In accordance with (3.7) 

M 
Z m, Du =0 
iffil 

Hence, in the limit of slow processes and long waves, non-local hydrodynamics is reduced to 
hydrodynamics with classical transport laws. 

Here ~7, ~,  ~ ~5t, ~131J a r e  functions of the parameter k0 which are identical to X7, Xs, )to, Xsl, X13U 
when ka = 0. Relations (3.12)--(3.14) are spatially local material relations of linear hydrodynamics with 
heredity. In the limit of slow processes (k0 ~ 0), the functions ~7, ~,  ~,  ~st, ~13u tend to the usual 
transport coefficients for a multicomponent, viscous, heat-conducting gas. 

On applying this procedure to equality (3.13), we obtain expressions for the bulk viscosity ~v and 
the shear viscosity rls 
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4. SIGNAL PROPAGATION 

A well-known deficiency of models with classical transport laws is the infinite velocity of signal 
propagation. 

Starting from [31], attempts have been made to construct models of transport processes with a finite 
signal velocity. Generalizing these attempts, we can say that dissipation and a finite signal velocity can 
be successfully and consistently combined by introducing temporal non-locality in one form or another 
into the theory [32-34]. The case when, apart from the temporal non-locality, there is also a spatial 
non-locality, has been considered previously in [35]. 

We will show how dissipation and a finite signal velocity are combined within the framework of the 
axiomatics proposed in Section 2. Suppose t) is a positive constant with the dimension of velocity. 
We will describe a class of models in which the signal velocity does not exceed t). Here, we shall use 
the theory in [36] which is based on the method of analytic expansion to complex values of the wave 
4-vector k~. 

We shall assume that condition B is satisfied and also that the medium is stationary at spatial infinity. 
Suppose s are small quantities, that is, the case of weak sources holds. According to (2.4), (2.2), (2.12) 

and (2.13) the propagation of perturbations in the Fourier images is described by the equation 

Alp=sir, AffiikoA +ikaZa + B (4.1) 

In particular, the dispersion equation for free waves has the form 

det A = 0 (4.2) 

We will use the following notation 
(a) T1 is the cone of the future in space-time 

Tl =Ix ° ~ 0, (x°) 2 ~v-2x*x °} 

(b) 7"2 is a tube in the complex space of the wave 4-vectors k~ = C~a + i13~ (~t~, 13~ are real) 

T~ = {130 < 0, (po) 2 >u 213.1~°} 

We assume that the signal transmission velocity in the material relations does not exceed t) (Condition 
b et i). In formal language, this means that the kernel a~B(X ) vanishes outside the cone TI. Then, according 

to the well-known results in [36], the matrix B is holomorphic in 7"2, and it follows from this that the 
matrixA is also holomorphic in T2. 

Next, we assume that inequality (2.15) still holds in the tube T2 (Condition 2). 
Finally, we assume that the inequality 

y~*ySA/, a >~ o -I I ya*ySZ~ I (4.3) 

is satisfied for any set of complex numbersy A (Condition 3). 
This assumption ensures that, when there is no dissipation (in the case of an ideal medium), the 

propagation velocity of perturbations does not exceed o. 
Supposey A is an arbitrary non-zero set of complex numbers. By Condition 2 and relations (2.3) and 

(2.4) the inequality 

Re(yA*yS A,~I) ~ -~oy A*yS A as - ~°y A*ySZ~t # 

is satisfied in the tube T2. 
It follows from this and from inequality (4.3) that, in the tube T2 

Re(y~t*ySAAa) > 0 

and hence Eq. (4.2) cannot be satisfied at any single point of T2. 
Suppose SA is an instantaneous source of momentum 

sA -- aA~x~) 

aA is a constant vector and SAF = aA. We now find the solution of Eq. (4.1) 

fF ---- A-la 
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It  follows f rom the preceding results that this formula defines a vector function which is holomorphic 
in the tube ?'2. Exponential  singularities are possible on the boundary of the tube. 
On carrying out an inverse Fourier transformation, we obtain the f unc t ion fA(x~) ,  which is equal to zero 
outside the cone T1 as was required. 

Hence,  the additional Conditions 1-3 imposed on the hydrodynamic model lead to a state of affairs 
where the propagat ion velocity of  small perturbations does not exceed o. 

5. F U N C T I O N A L  F O R M  OF T H E  K E R N E L S  

When constructing non-local hydrodynamic models in a phenomenological  approach, it is necessary 
to define model  expressions for the kernels. For a sufficiently general approach, it is reasonable to use 
expressions of  the form 

x = -J  ~Po (x)dx(iko + qpt ( x ) ) ( ( ~  + opt (~))~ + LkocP2 (x))-t (5.1) 

for the scalar functions Xn, where T is a continuous parameter  and (p0(x), g)t(z), (P2('17) a re  non-negative 
functions. Expression (5.1) satisfies condition (3.11), it is invariant under the group of rotations and is 
holomorphic when Im k0 < 0 (causality). Moreover,  the inequality Re X < 0 is satisfied, which enables 
one to satisfy requirement (2.16). Expression (5.1), depending on the choice of  the functions q)0(x), ~01('c), 
q)2(x) (including the case of  q)0(x) in the form of a sum of 6-functions), covers the majority of models 
and exact theoretical expressions for hydrodynamic kernels. 

6. C O N C L U S I O N  

The axiomatic scheme of phenomenological  hydrodynamics which has been proposed is intended 
for describing rapidly occurring processes or short waves in the bulk of a liquid or a gas. The theory 
can be generalized by taking account of the boundary conditions. Additional non-local terms, describing 
the effect of  the boundaries, and then introduced into the material relations. Non-local hydrodynamics 
is reduced to classical hydrodynamics in the limit of slow processes and long waves and, therefore, non- 
local hydrodynamics formally encompasses all domains of application of classical hydrodynamics. 
However, non-local effects, in fact, really manifest themselves when classical hydrodynamics are no longer 
applicable, such as in problems of the propagation of ultrasound. 
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